Stimulation of Autotrophic Denitrification by Intrusions of the Bosporus Plume into the Anoxic Black Sea

نویسندگان

  • Clara A. Fuchsman
  • James W. Murray
  • James T. Staley
چکیده

Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O(2) and [Formula: see text]) into the oxic, suboxic, and anoxic layers. Prominent oxygen intrusions caused an overlap of [Formula: see text] and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume) indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria CandidatusScalindua were present. These results provide evidence for a modified ecosystem with different N(2) production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139) was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N(2) production pathway in the central Black Sea as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surveying Denitrification Efficacy in Up-Flow Packed Bed Bioreactor Operated under Heterotrophic Condition Using Autotrophic Bacteria

Introduction: The biological denitrification process is an interesting cost-effective technique to remove nitrate from water supplies. Acetic acid can be used as a carbon source in this process, but its consumption rate is a critical issue and, in some cases, it is quite different from stoichiometric constants. The current study aimed to investigate the nitrate removal in an up-flow packed bed ...

متن کامل

Probing nitrogen metabolism in the redox gradient of the Black Sea.

T he Black Sea, earth’s largest anoxic water body, serves as a model system for studies of marine chemistry and biology. The article by Lam et al. (1) in this issue of PNAS describes a new approach to assessing the activity of Black Sea nitrifying bacteria and archaea that are globally important in nitrogen metabolism. The Black Sea was formed after the retreat of the glaciers in the most recen...

متن کامل

Identification of a Thiomicrospira denitrificans-like epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic Sea.

Identification and functional analysis of key members of bacterial communities in marine and estuarine environments are major challenges for obtaining a mechanistic understanding of biogeochemical processes. In the Baltic Sea basins, as in many other marine environments with anoxic bodies of water, the oxic-anoxic interface is considered a layer of high bacterial turnover of sulfur, nitrogen, a...

متن کامل

Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media

 Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N) ratio and empty bed contact time (EBCT) on nitrate removal efficiency and byproducts. Methods: Experiments were car...

متن کامل

A Greigite-Based Magnetostratigraphic Time Frame for the Late Miocene to Recent DSDP Leg 42B Cores from the Black Sea

Throughout the Late Neogene, the Black Sea experienced large paleoenvironmental changes, switching between (anoxic) marine conditions when connected to the Mediterranean Sea and (oxic) freshwater conditions at times of isolation. We create a magnetostratigraphic time frame for three sites drilled during Deep Sea Drilling Project (DSDP) Leg 42B to the Black Sea (drilled in 1975). At the time, ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012